Pitavastatin decreases tau levels via the inactivation of Rho/ROCK.
نویسندگان
چکیده
Epidemiological studies have shown that long-term treatment with statins decreases the risk of developing Alzheimer's disease. Statins have pleiotropic effects by lowering the concentration of isoprenoid intermediates. Although several studies have shown that statins may reduce amyloid beta protein levels, there have been few reports on the interaction between statins and tau. We report here that pitavastatin reduces total and phosphorylated tau levels in a cellular model of tauopathy, and in primary neuronal cultures. The decrease caused by pitavastatin is reversed by the addition of mevalonate, or geranylgeranyl pyrophosphate. The maturation of small G proteins, including RhoA was disrupted by pitavastatin, as was the activity of glycogen synthase kinase 3β (GSK3β), a major tau kinase. Toxin A, inhibitor of glycosylation of small G proteins, and Rho kinase (ROCK) inhibitor decreased phosphorylated tau levels. Rho kinase inhibitor also inactivated glycogen synthase kinase 3β. Although the mechanisms responsible for the reduction in tau protein by pitavastatin require further examination, this report sheds light on possible therapeutic approaches to tauopathy.
منابع مشابه
Pitavastatin-induced thrombomodulin expression by endothelial cells acts via inhibition of small G proteins of the Rho family.
OBJECTIVE 3-hydroxyl-3-methyl coenzyme A reductase inhibitors (statins) can function to protect the vasculature in a manner that is independent of their lipid-lowering activity. The main feature of the antithrombotic properties of endothelial cells is an increase in the expression of thrombomodulin (TM) without induction of tissue factor (TF) expression. We investigated the effect of statins on...
متن کاملTumor necrosis factor α decreases nitric oxide synthase type 3 expression primarily via Rho/Rho kinase in the thick ascending limb.
Inappropriate Na(+) reabsorption by thick ascending limbs (THALs) induces hypertension. NO produced by NO synthase type 3 (NOS3) inhibits NaCl reabsorption by THALs. Tumor necrosis factor α (TNF-α) decreases NOS3 expression in endothelial cells and contributes to increases in blood pressure. However, the effects of TNF-α on THAL NOS3 and the signaling cascade are unknown. TNF-α activates severa...
متن کاملHMG-CoA reductase inhibitors up-regulate anti-aging klotho mRNA via RhoA inactivation in IMCD3 cells.
OBJECTIVE Klotho is thought to play a critical role in the development of age-related disorders including arteriosclerosis. Statins may exert vascular protective effects, independent of the lowering of plasma cholesterol levels. We investigated the impact of statins on mRNA expression of the age-suppressor gene, klotho in mIMCD3 cells. METHODS AND RESULTS Klotho mRNA levels were evaluated wit...
متن کاملRho/Rho-associated kinase pathway in glaucoma (Review).
The Rho/ROCK pathway plays important roles in the modulation of the cytoskeletal integrity of cells, the synthesis of extracellular matrix components in the aqueous humor outflow tissue and the permeability of Schlemm's canal endothelial cells. The activation of the Rho/ROCK pathway results in trabecular meshwork (TM) contraction, and the inhibition of this pathway would provoke relaxation of T...
متن کاملRho Kinase Inhibition as a Therapeutic for Progressive Supranuclear Palsy and Corticobasal Degeneration.
UNLABELLED Progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD) are neurodegenerative four-repeat tauopathies with no cure. Mitigating pathogenic tau levels is a rational strategy for tauopathy treatment, but therapeutic targets with clinically available drugs are lacking. Here, we report that protein levels of the Rho-associated protein kinases (ROCK1 and ROCK2), p70 S6 kin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neurobiology of aging
دوره 33 10 شماره
صفحات -
تاریخ انتشار 2012